CHAPITRE 4

Potentiels thermodynamiques

4.6 Rayonnement du corps noir

Yok Un corps noir désigne un objet en ’équilibre thermique avec ’environ-
nement qui émet un rayonnement dont la densité volumique d’énergie interne
ne dépend que de la température. L’énergie interne de ce rayonnement est de
la forme,

3/ 3¢\ _
U(S,V)=4<160> Sy

ou ¢ est la vitesse de la lumiere dans le vide et ou o est la constante de Stefan-
Boltzmann.
1) Déterminer 1’énergie libre F (T, V) du rayonnement.

2) Montrer que I'énergie interne U (S, V') du rayonnement peut étre obtenue en
opérant une transformation de Legendre inverse de ’énergie libre F (T, V).

3) Trouver les expressions p (T, V) et p (S, V) de la pression du rayonnement.

Solution

1) La température (2.16) du rayonnement du corps noir est définie comme,

U (S,V 3¢ \/? _
T(S,V)= 7§)S ) _ (160) S8y —1/3

En inversant cette relation, on obtient ’entropie du rayonnement S (7', V)
en fonction de la température T' et du volume V|

S(T,V) = (1360”> Vv

En substituant cette équation dans ’expression de ’énergie interne du
rayonnement U (S, V') on trouve,

_40’

C

U (S (T,V) ,V) TV
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L’énergie libre F (T, V') est obtenue par transformation de Legendre (4.21)
de I’énergie interne U (S, V') par rapport & 'entropie S,

F(T,V):U(S(T,V),V) ~TS(T,V)

A Taide des équations précédentes, cette transformation s’écrit explicite-

ment,
4o

3c
L’entropie (4.25) du rayonnement du corps noir est définie comme,
oF (T,V) 160

En inversant cette relation, on obtient la température du rayonnement
T (S,V) en fonction de I’entropie S et du volume V,

F(T,V) = TV

3c 1/3
T(S,V):(wg> S8y —1/3

En substituant cette équation dans l’expression de 1’énergie libre du rayon-
nement F (T, V) on obtient,

F(T(S V) V)— 1(3c 1/354/3‘/—1/3
) 4 \16o

L’énergie interne U (S,V) est obtenue par transformation de
Legendre (4.21) de énergie libre F (T,V) par rapport a la tempéra-
ture T,

U(S,V):F(T(S,V),V)+T(S,V)S

A Taide des équations précédentes, cette transformation s’écrit explicite-
ment,

1/3
_ 3 ( 3c 4/37,—1/3
U(S’V)_4<160> SV
A T’aide de la définition (2.17), la pression de radiation du corps noir p (S, V)
s’exprime en fonction de S et V' comme,

CUSY) 1 3e NV s
pSV) ===y — =1 (160) STV
A I'aide de la définition (4.26), la pression de radiation du corps noir p (T, V)
s’exprime en fonction de T et V' comme,
_OF(TVV) 4—0T4
v 3c
En substituant 'entropie S (T, V) ou la température T (S, V') dans I'expres-

sion des pressions p (S, V) ou p (T, V), on arrive & la conclusion qu’elles sont
égales comme il se doit.

p(T,V) =
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4.7 Gaz parfait

YoX  Les gaz suffisamment dilués se comportent comme des gaz parfaits &
température ambiante. Au chapitre 5, on montrera que la variation de I’entropie
d’un systeme simple constitué de N moles de gaz parfait lors d’'un processus

1 — f s'écrit,
Uy Vi
AS;,r=cNRIn|—= |+ NRIn[ —=
o ( U ) ( Vi )
ou c¢ est un parametre constant positif, R est la constante des gaz parfaits, U;
et Uy sont les énergies internes initiale et finale et V; et Vy sont les volumes
initial et final.

3

1) Montrer que I'entropie du gaz parfait peut alors étre écrite comme,
U\V
S{U,V)=NR1 — | = S
v ((g) 1) s

ol 'entropie Sy, ’énergie interne Uy, le volume V[ sont des constantes. Ces
constantes satisfont les identités suivantes,

Uo = CNRTO = CDo VO

ou la température Tg et la pression pg sont aussi des constantes.
Déterminer 1'énergie interne U (S, V) du gaz parfait.
Déterminer 1'énergie libre F' (T, V) du gaz parfait.

Déterminer I'enthalpie H (S, p) du gaz parfait.

Déterminer 1'énergie libre G (T, p) du gaz parfait.

Solution
1) En définissant les grandeurs initiale et finale comme,

S()ESZ‘ et U()EUZ et ‘/()E%
S=5y et U=U; et V=V

La variation d’entropie du processus s’écrit,

U \% U\° v
S—Sy=cNRIn (U0> + NR In (Vo> =NR <ln (Uo> +1n (V0>>

Ainsi, 'entropie est,

U\°V
S(U,V)-NRIn((UO) VO) + So

2) En inversant l'entropie S (U,V) du gaz parfait, on obtient son énergie
interne,

1
c

v\~ S— Sy v\ * S — S
U(S,V)="U, (VO> exp( cNR) cNR O(V()) eXp( “NR )
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La température (2.16) du gaz parfait est définie comme,

1
c

USV) . (V\F S— S
TS V)= %53 _TO(V0> eXp(cNR>

En inversant cette relation, on obtient ’entropie du gaz parfait en fonction
de la température et du volume,

T (V\°®

En substituant cette équation dans ’expression de ’énergie interne du
gaz parfait U (S,V), 'énergie interne du gaz parfait est alors exprimée
en termes de la température comme,

U (S(T, V) 7V) — ¢NRT

L’énergie libre F' (T, V') est obtenue par transformation de Legendre (4.21)
de I’énergie interne U (S, V) par rapport a l'entropie S,

F(T,V):U(S(T,V)y) — TS(T,V)

A Daide des équations précédentes, cette transformation s’écrit explicite-
ment,
1
T (V\°©
F(T =c¢cNRT|1—In[— (= - T
(T,V)=cNR ( n(T()(VO) )) So
La pression (2.17) du gaz parfait est définie comme,
S— S
P\"cNR
qui est remise en forme comme,
VT [(5—8
S, V)=po( — 0
ponm () o (58)

En inversant cette relation, on obtient le volume du gaz parfait V (.S, p) en
fonction de 'entropie et de la pression,

v (T S = S
visn = ()" e ()

En substituant cette équation dans I'expression de 1’énergie interne du gaz
parfait U (S, V'), compte tenu de 'identité,

LUSY) 10 <v)‘”¢l

p(S,V) = v v\

c+1

« S—So — ex S_SO ¢
“P\eNR ) TP \(cr 1) NR
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on obtient I’expression suivante,
“Si /S-S, Y < [ S-S
Po\ °¢ — D0 © — 90 ¢
U(S,V s, ): NRT, (2 P20 _ 2T 00
) =evwns () e (v oo (@)
qui est remise en forme comme,

U(S.V(S.p) =cNRT <;> T exp (M)

L’enthalpie H (S, p) est obtenue par transformation de Legendre (4.29) de
Pénergie interne U (S, V') par rapport au volume,

H(S,p) = U (S.V(S.p)) +PV (S.p)

A Taide des équations précédentes, cette transformation s’écrit explicite-
ment,

- P 2o\ Y g (S =50
H(S’p)<CNRT°<pO> ey >eXp(<c+1>NR)

Compte tenu de I'identité,

po () e (2) () - ven ()
p Po Po Po

Penthalpie H (S, p) se réduit a,

H(S,p)=(c+1)NRTy (;)Cilexp <m;>

La température (4.33) du gaz parfait est définie comme,

COH(Sp) . (p\TT S— So
risn =25 =n (1) oo ()

En inversant cette relation, on obtient ’entropie du gaz parfait S (T, p) en
fonction de la température et de la pression,

S(T,p) =(c+1)NRIn (;0 <p>_c+l> + Sp

Po

En substituant cette équation dans ’expression de I’enthalpie du gaz parfait
H (S, p), elle est alors exprimée en termes de 'entropie et de la température
comme,

H(S(T,p),p) = (c+1)NRT
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5) L’énergie libre G (T, p) est obtenue par transformation de Legendre (4.37)
de V’enthalpie H (S, p) par rapport & 'entropie S,

G(Tap) =H (S(Tap) 7p) - TS(T,]))

A Taide des équations précédentes, cette transformation s’écrit explicite-

ment,
T (p —
G(T,p)=(c+1)NRT |1—In| = | — — TSy
To \ po

Le volume (4.42) du gaz parfait est définie comme,

_ O0G(T,p) NRT
dp P

V(T,p)

En inversant cette relation, on obtient la pression du gaz parfait p (T, V)
en fonction de la température et du volume,

NRT
['V)= ——
p( ’ ) vV

4.13 Propriétés thermomécaniques d’un élastique

Yorok  L’état d’un élastique est décrit par les variables d’état entropie S
et de longueur L. La différentielle de 1’énergie interne U (S, L) de I'élastique
s’écrit,

oU (S,L) o OU(S,L)

dUu (S,L) = B L

dL =T (S,L)dS + f (S,L)dL

ou f (S, L) est la norme de la force résultante exercée sur ’élastique. Les pro-
priétés physiques du matériau de 1’élastique sont caractérisées par le coefficient
de dilatation a force constante,

1oLy
=T ar
le coefficient de compressibilité isotherme,
1 0L(T, f)
XT=F
L o0f
et la capacité thermique a longueur constante,
oS (T,L)
= T _—
C oT

Utiliser ces trois propriétés physiques du matériau, considérées comme des
constantes, pour répondre aux questions suivantes.
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1) Déterminer la dérivée partielle de la force résultante f (T, L) exercée sur
I’élastique par rapport a la température lorsque sa longueur est fixée.

2) Exprimer le transfert de chaleur durant la variation isotherme de la lon-
gueur AL;_, ¢ de I'élastique d’un état initial ¢ & un état final f.

3) Déterminer la dérivée partielle de la température T de 1’élastique par rap-
port a sa longueur L lors d’un processus adiabatique réversible.

Solution

1) En appliquant l'identité cyclique de dérivées partielles (4.97) a la force
f (T, L), on obtient,

of (T, L) oT (L, f) OL(T, f)

T oL of =1

et ainsi,

Of (T.L) _ _(LOL(T./)\ (LOL(T.H)\"" _ oy
T _(L T ><L of > XxT

2) A température constante T, le transfert infinitésimal de chaleur s’écrit,
0S (T, L)
oL

L’énergie libre F' (T, L) est la transformée de Legendre de 1’énergie interne
U (S, L) par rapport a ’entropie S (T, L),

§Q=TdS(T,L) =T dL

F(T,L) = U(s (T, L) ,L) ~ TS(T,L)
La différentielle de 1’énergie libre s’écrit,
dF (T, L) = dU(s (T, L) ,L) — TdS(T,L)— §(T,L)dT
Compte tenu de la différentielle de 1’énergie libre,
dU(S(T,L),L) = TdS(T,L)+ f (T, L)dL
La différentielle de 1’énergie libre s’écrit,
dF (T,L) = — S(T,L)dT + f (T, L) dL

Le théoreme de Schwarz appliqué a 1'énergie libre F' (T, L) s’écrit,

0 (a%g,m) 8<8F(;§7L)>

oL - ar

ce qui donne la relation de Maxwell,

os(T,L) _of(T,L) oy
oL o p e
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A l'aide de la relation de Maxwell, le transfert infinitésimal de chaleur peut
étre mis sous la forme,
of (T,L)

OS(LL) yp . pOF(TL) 0 g

Q=T—51 T X7

L’intégration de la chaleur infinitésimale fournie & I’élastique a température
constante T de 1’état initial ¢ & I'état final f s’écrit,

f . Ly
Qi—>f:/ 6Q:To‘—f/ dL
i XT JIL,

Ainsi, apres intégration du transfert de chaleur infinitésimal J@ a tempé-
rature T constante, on obtient le transfert de chaleur pour un processus
isotherme d’un état initial ¢ & un état final f,

(0%
Qi%f = TxiiALiaf

3) Pour un processus adiabatique réversible, on doit déterminer la dérivée de la
longueur L (S, T) par rapport a la température lorsque 1’entropie est main-
tenue constante. A D'aide de I'identité cyclique de dérivées partielles (4.97)
et de la dérivée partielle de I'entropie par rapport a la longueur obtenue au
point 2), on trouve,

oT (S, L) or(S,L) oS(T,L) T 9S(T,L) of

oL a8 oL - C, 0L xrCL

4.15 Sous-systemes et réservoir de chaleur et de travail

Yok On considere un systeme fermé et déformable contenant un gaz homo-
gene. Le systeme est constitué de deux sous-systemes simples séparés par une
paroi fixe, perméable et diatherme. Le systéme a une température 7' et une
pression p constantes car il est a I’équilibre thermique et mécanique avec un
réservoir de chaleur et de travail & température Teyt, et pression p oy (fig. 4.1).
L’énergie interne de la paroi est négligeable.

1) Exprimer la différentielle de ’énergie libre dG en fonction de la source
d’entropie Xg.
2) Exprimer la différentielle de I’énergie libre dG en fonction des potentiels

chimiques u; et po du gaz dans les sous-systemes 1 et 2. En déduire que
dG < 0.

Solution

1) Compte tenu de la définition (4.40) & température T et pression p
constantes, la différentielle de 1’énergie libre dG s’écrit,

dG = dU — T dS + pdV
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Comme le systeme est fermé, le courant énergétique de matiere du réser-
voir vers le systeme est nul, c’est-a-dire I = 0. Compte tenu du travail
infinitésimal (2.43) effectué par le réservoir sur le systéme et du premier
principe (1.59) pour un systéme fermé,

dU = 6Q + 6W =0Q — pdV

A Taide de la chaleur infinitésimale (1.56), du deuxieme principe (2.29) et
de dS = S dt, la différentielle de 1’énergie libre de Gibbs peut étre mise sous
la forme,

4G = 6Q — TdS = (Ig = T§)dt = ~TSgdt <0

2) L’énergie libre de Gibbs du systeme G (11, Ts, p1, p2, N1, N2) est la somme
des énergies libres G1 (11, p1, N1) et G2 (T3, pa, Na) des deux sous-systemes,

G (T1,T5,p1, p2, N1, N2) = G1 (T1,p1, N1) + G2 (T, p2, No)

A I’équilibre thermique et mécanique, les températures T et T et les pres-
sions p; et py des deux sous-systemes sont égales a celles du réservoir de
chaleur et de travail Tyt €t Poxt,

T=T =Ty="Tex
P =DP1 =DP2 = Pext

La différentielle de 1’énergie libre de Gibbs dG a température T et pression
p constantes s’écrit,

0G1 0G+

dG = 291 an, + 992 N
G = 5N, W+ gy, WV

réservoir de chaleur et de travail

Fig. 4.1 Un systéme fermé et déformable contenant un gaz homogene est divisé en deux
sous-systémes simples par une paroi fixe, perméable et diatherme. Le systéme est a I’équilibre
thermique et mécanique avec un réservoir de chaleur a température Text et pression pext.-
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Etant donné que le systeme est fermé, la différentielle du nombre total de
moles de gaz dN s’annule,

dN =dN; +dNy =0 ainsi dNy = —dN;

De plus, en appliquant la définition (4.43) aux deux sous-systémes, on

obtient,
6G1 aG2
et

=N b2 = N,
Par conséquent, la différentielle de I’énergie libre de Gibbs dG a température
T pression p constantes se réduit a,

K1

dG = (g1 — p2) AN

Cette équation donne lieu a trois types de solutions. Premieérement, dans
le cas ot ;41 > e, le gaz se déplace du sous-systeme 1 vers le sous-systeme
2

)

1 > o et dN1 <0 ainsi dG <0

Deuxiemement, dans le cas ot u; < ps, le gaz se déplace du sous-systeme
2 vers le sous-systeme 1,

w1 < fo et dNy >0 ainsi dG <0

Troisiemement, dans le cas ou p; = o, c’est-a-dire a 1’équilibre chimi-
que (3.72), il n’y a plus de transfert de gaz a travers la paroi,

1 = o et dN; =0 ainsi dG =0

Ainsi,
dG <0

4.16 Turbine isotherme

WOk On considére un systéme ouvert constitué de deux sous-systémes
simples, considérés comme des blocs rigides contenant un fluide incompressible
homogene en mouvement & vitesse uniforme. Les deux blocs sont séparés par
une turbine effectuant un travail externe sur le fluide lors de son transfert
du sous-systeme 1 au sous-systeme 2. L’ensemble est maintenu & température
constante T (fig. 4.2). L’énergie interne de la machine est négligeable. Les trans-
ferts de chaleur et de matiere & travers la machine sont stationnaires. Ainsi,
par rapport au référentiel des blocs, les vitesses v1 et vy du fluide dans les
deux blocs sont constantes et telles que v? > v3. De plus, I’énergie cinétique
de rotation de la turbine est constante et n’intervient pas dans ’analyse.

On dénote 157" et I57! le courant de chaleur et le courant énergétique

de matiere de I'environnement vers le bloc 1, I57? et I47? le courant de
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Fig. 4.2 Une turbine effectue un travail externe sur un fluide qui est transféré de maniere
stationnaire du bloc 1 au bloc 2 a température constante. Les courants de chaleur IQO_’l et

IQQ_’O décrivent le transfert de chaleur entre l’environnement et le systéme et les courants

énergétiques de matiere Ig_’l et ICZ._>0 décrivent le transfert de matiere.

chaleur et le courant énergétique de matiere du bloc 1 vers le bloc 2, et 157" et

1279 le courant de chaleur et le courant énergétique de matiére du bloc 2 vers
Penvironnement. On suppose que le transfert de matiere entre I’environnement
et chaque bloc a lieu au potentiel chimique du bloc. Au chapitre 8, on montrera
que les potentiels chimiques du fluide dans les sous-systemes s’écrivent,

,U,1:h1—T81 et MQZhQ_TSQ

ou hy et ho sont les enthalpies molaires du fluide dans les deux blocs et sq et
$o sont les entropies molaires du fluide dans les deux blocs. Durant le transfert
stationnaire de matiere et de chaleur :

1) Montrer que les courants de fluide satisfont I'identité,
J = IO—)l — Il—>2 — I2—>0 >0
2) A Taide des équations de bilan de masse et des courants de masse,
I]\(;[_ﬂ :mIO—>1 et IA2/I—>0:mI2—>O

ol m est la masse molaire du fluide, montrer que les courants de masse
satisfont 1'identité,

0—1 1—2 2—0
I =1y =1y "=1Iy" >0

3) A Taide des courants d’entropie,
Ié)—)l _ SlIO%l et ISQ~>0 _ 521'2*}0

exprimer le courant de chaleur I de l'environnement vers le systeme en
termes du courant de fluide I et des entropies molaires s et ss.

4) Exprimer le courant énergétique de matiere Ic de environnement vers le
systeme en termes du courant de fluide I, des enthalpies molaires hy et ho
et des entropies molaires s; et ss.
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Déterminer le courant d’énergie interne Iy de ’environnement vers le sys-
teme.

Exprimer la puissance extérieure P°** de la turbine en termes du courant
de fluide I et de la masse molaire m.

Déterminer la relation qui lie les enthalpies molaires h et hy et les vitesses
v1 et vy du fluide.

Dans le cas particulier ou la turbine se comporte comme une paroi per-
méable qui laisse simplement passer le fluide d’un bloc a l'autre sans effec-
tuer de travail externe, c’est-a-dire que P = 0, lier les vitesses v et v
entre elles et les enthalpies molaires hy et ho du fluide entre elles.

Solution

1)

Pour un transfert stationnaire de matiere entre les blocs, I’équation de bilan
de fluide (2.22) dans chaque bloc s’écrit,

N1:I0~>17I1~>2:0 et N2:II—)2712—>0:O
Ainsi, on en conclut que,
I = IO*}I — Il*}? — 12%0 > 0

Etant donné qu’il n’y a pas de source de masse, I’équation de bilan de masse
dans chaque bloc pour un transfert stationnaire de masse entre les blocs
s’écrit,

) 0—1 1—2 ) 1—2 2—0
My =107 —I2=0 et My=I%—I1%30=0
o I97Y Il 72 et 1270 sont respectivement les courants de masse entre

I’environnement et le bloc 1, le bloc 1 et le bloc 2 et le bloc 2 et ’environ-
nement. Ainsi, on en conclut que,

IM — I]O\Jﬂl — 11\14%2 — I]QVIHO >0

Les courants de masse liés au transfert de matiere entre ’environnement et
le bloc 1 et entre le bloc 2 et I’environnement s’écrivent,

It =mI®t=mI et IF0=mI*"=mI
Ainsi,
IM =ml

Le courant de chaleur de I’environnement vers le systéme a température T’
s’écrit,

IQ — I(SHI o IQZHO —_ TIé)*}l o TI‘S%*)O —_ Tslj()—)l o TSQIQ—)O

Les courants d’entropie liés au transfert de matiere entre ’environnement
et le bloc 1 et entre le bloc 2 et I’environnement s’écrivent,

I =517 =517 et 1270 =510 =551
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Le transfert de chaleur est stationnaire (2.36). Or, le courant d’entropie I's
n’est pas nul. Compte tenu de 1’équation de bilan d’entropie (2.3), la source
d’entropie ¥ g n’est pas nulle non plus, ce qui signifie que le processus est
irréversible,

Yg=—Isg=—(I3" - 1) =~ (51— 82) I >0
Ainsi,
So > 81

Par conséquent, le courant de chaleur de ’environnement vers le systeme
se réduit a,

IQ =TlIg :T(Sl — SQ)I <0
Ainsi, il y a un transfert de chaleur du systéme vers ’environnement afin
de compenser la chaleur dégagée dans le systeme par dissipation.
Le courant énergétique de matiere de 'environnement vers le systeme (2.32)
s’écrit,

IC _ O—)l IQ—)O I IO~>1 o MQIQ—)O _ (/141 o MQ)I

Ainsi, il est exprimé en termes des enthalpies molaires comme,
Io = (b = Ts1) = (ha = Tsy) ) T
Le courant d’énergie interne (1.50) s’écrit,
Iy =Ig+1Ic=(h— hs)I

Etant donné que les vitesses du fluide sont uniformes dans chaque bloc, la
puissance extérieure de la turbine est la variation temporelle de 1’énergie
cinétique du systeme due au courant de masse entre ’environnement et les
blocs,

Pt = IHJ 5 — I‘Hl = f%IM (v — v3) = —%m[(v% — v3)

Ainsi, la puissance extérieure de la turbine,
Pext _ 1 I 2 2
=—5m (vi—v3) <0

est négative car v > v3 ce qui signifie que le systeme, c’est-a-dire le fluide,
effectue un travail extérieur W <t < 0 sur la turbine et non I'inverse.

Compte tenu du premier principe (1.71) pour un transfert stationnaire de
matiere entre I’environnement et les deux blocs rigides, c’est-a-dire Py = 0,

E=Ig+Ic+ P> =Iy+P™ =0
on conclut aussi du premier principe que la puissance extérieure de la tur-

bine s’écrit,
P = — Iy = (hy — hy) 1
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La turbine n’est pas un systéme simple, car il n’existe pas de référentiel au
repos du systeme. Par conséquent, on ne peut utiliser I’équation de bilan
d’énergie interne (1.48) qui est définie par rapport au référentiel au repos.
En comparant les deux expressions de la puissance extérieure P, on en
conclut que,

(hy — hl)I:—%mI(vf— v3)

Par conséquent, la différence entre I’énergie cinétique molaire et I’enthalpie
molaire du fluide est conservée par la turbine isotherme,

1 1
im'u%— hlzim’ug— h2

Si la turbine ne travaille pas, la puissance extérieure est nulle, c’est-a-dire
que Pt = (. Ainsi, il n’y a pas de variation d’énergie cinétique et donc
les vitesses sont égales,

V1 = V2

On en conclut alors que les enthalpies molaires sont aussi égales,
h1 = hs

comme dans la détente de Joule-Thomson qui est isenthalpique.



