
Chapitre 4

Potentiels thermodynamiques

4.6 Rayonnement du corps noir

Un corps noir désigne un objet en l’équilibre thermique avec l’environ-
nement qui émet un rayonnement dont la densité volumique d’énergie interne
ne dépend que de la température. L’énergie interne de ce rayonnement est de
la forme,

U (S, V ) =
3

4

(
3c

16σ

)1/3

S4/3V −1/3

où c est la vitesse de la lumière dans le vide et où σ est la constante de Stefan-
Boltzmann.

1) Déterminer l’énergie libre F (T, V ) du rayonnement.

2) Montrer que l’énergie interne U (S, V ) du rayonnement peut être obtenue en
opérant une transformation de Legendre inverse de l’énergie libre F (T, V ).

3) Trouver les expressions p (T, V ) et p (S, V ) de la pression du rayonnement.

4.6 Solution

1) La température (2.16) du rayonnement du corps noir est définie comme,

T (S, V ) =
∂U (S, V )

∂S
=

(
3c

16σ

)1/3

S1/3V −1/3

En inversant cette relation, on obtient l’entropie du rayonnement S (T, V )
en fonction de la température T et du volume V ,

S (T, V ) =

(
16σ

3c

)
T 3V

En substituant cette équation dans l’expression de l’énergie interne du
rayonnement U (S, V ) on trouve,

U
(
S (T, V ) , V

)
=

4σ

c
T 4V
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L’énergie libre F (T, V ) est obtenue par transformation de Legendre (4.21)
de l’énergie interne U (S, V ) par rapport à l’entropie S,

F (T, V ) = U
(
S (T, V ) , V

)
− T S (T, V )

À l’aide des équations précédentes, cette transformation s’écrit explicite-
ment,

F (T, V ) = − 4σ

3c
T 4V

2) L’entropie (4.25) du rayonnement du corps noir est définie comme,

S (T, V ) = − ∂F (T, V )

∂T
=

16σ

3c
T 3V

En inversant cette relation, on obtient la température du rayonnement
T (S, V ) en fonction de l’entropie S et du volume V ,

T (S, V ) =

(
3c

16σ

)1/3

S1/3V −1/3

En substituant cette équation dans l’expression de l’énergie libre du rayon-
nement F (T, V ) on obtient,

F
(
T (S, V ) , V

)
= − 1

4

(
3c

16σ

)1/3

S4/3V −1/3

L’énergie interne U (S, V ) est obtenue par transformation de
Legendre (4.21) de l’énergie libre F (T, V ) par rapport à la tempéra-
ture T ,

U (S, V ) = F
(
T (S, V ) , V

)
+ T (S, V )S

À l’aide des équations précédentes, cette transformation s’écrit explicite-
ment,

U (S, V ) =
3

4

(
3c

16σ

)1/3

S4/3V −1/3

3) À l’aide de la définition (2.17), la pression de radiation du corps noir p (S, V )
s’exprime en fonction de S et V comme,

p (S, V ) = − ∂U (S, V )

∂V
=

1

4

(
3c

16σ

)1/3

S4/3V −4/3

À l’aide de la définition (4.26), la pression de radiation du corps noir p (T, V )
s’exprime en fonction de T et V comme,

p (T, V ) = − ∂F (T, V )

∂V
=

4σ

3c
T 4

En substituant l’entropie S (T, V ) ou la température T (S, V ) dans l’expres-
sion des pressions p (S, V ) ou p (T, V ), on arrive à la conclusion qu’elles sont
égales comme il se doit.
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4.7 Gaz parfait

Les gaz suffisamment dilués se comportent comme des gaz parfaits à
température ambiante. Au chapitre 5, on montrera que la variation de l’entropie
d’un système simple constitué de N moles de gaz parfait lors d’un processus
i → f s’écrit,

∆Si→f = cNR ln

(
Uf

Ui

)
+NR ln

(
Vf

Vi

)
où c est un paramètre constant positif, R est la constante des gaz parfaits, Ui

et Uf sont les énergies internes initiale et finale et Vi et Vf sont les volumes
initial et final.

1) Montrer que l’entropie du gaz parfait peut alors être écrite comme,

S (U, V ) = NR ln

((
U

U0

)c
V

V0

)
+ S0

où l’entropie S0, l’énergie interne U0, le volume V0 sont des constantes. Ces
constantes satisfont les identités suivantes,

U0 = cNRT0 = c p0 V0

où la température T0 et la pression p0 sont aussi des constantes.

2) Déterminer l’énergie interne U (S, V ) du gaz parfait.

3) Déterminer l’énergie libre F (T, V ) du gaz parfait.

4) Déterminer l’enthalpie H (S, p) du gaz parfait.

5) Déterminer l’énergie libre G (T, p) du gaz parfait.

4.7 Solution

1) En définissant les grandeurs initiale et finale comme,

S0 ≡ Si et U0 ≡ Ui et V0 ≡ Vi

S ≡ Sf et U ≡ Uf et V ≡ Vf

La variation d’entropie du processus s’écrit,

S − S0 = cNR ln

(
U

U0

)
+NR ln

(
V

V0

)
= NR

(
ln

(
U

U0

)c

+ ln

(
V

V0

))
Ainsi, l’entropie est,

S (U, V ) = NR ln

((
U

U0

)c
V

V0

)
+ S0

2) En inversant l’entropie S (U, V ) du gaz parfait, on obtient son énergie
interne,

U (S, V ) = U0

(
V

V0

)− 1
c

exp

(
S − S0

cNR

)
= cNRT0

(
V

V0

)− 1
c

exp

(
S − S0

cNR

)
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La température (2.16) du gaz parfait est définie comme,

T (S, V ) =
∂U (S, V )

∂S
= T0

(
V

V0

)− 1
c

exp

(
S − S0

cNR

)
En inversant cette relation, on obtient l’entropie du gaz parfait en fonction
de la température et du volume,

S (T, V ) = cNR ln

(
T

T0

(
V

V0

) 1
c

)
+ S0

En substituant cette équation dans l’expression de l’énergie interne du
gaz parfait U (S, V ), l’énergie interne du gaz parfait est alors exprimée
en termes de la température comme,

U
(
S (T, V ) , V

)
= cNRT

3) L’énergie libre F (T, V ) est obtenue par transformation de Legendre (4.21)
de l’énergie interne U (S, V ) par rapport à l’entropie S,

F (T, V ) = U
(
S (T, V ) , V

)
− T S (T, V )

À l’aide des équations précédentes, cette transformation s’écrit explicite-
ment,

F (T, V ) = cNRT

(
1− ln

(
T

T0

(
V

V0

) 1
c

))
− T S0

4) La pression (2.17) du gaz parfait est définie comme,

p (S, V ) = − ∂U (S, V )

∂V
=

1

c

U0

V0

(
V

V0

)− c+1
c

exp

(
S − S0

cNR

)
qui est remise en forme comme,

p (S, V ) = p0

(
V

V0

)− c+1
c

exp

(
S − S0

cNR

)
En inversant cette relation, on obtient le volume du gaz parfait V (S, p) en
fonction de l’entropie et de la pression,

V (S, p) = V0

(
p0
p

) c
c+1

exp

(
S − S0

(c+ 1)NR

)
En substituant cette équation dans l’expression de l’énergie interne du gaz
parfait U (S, V ), compte tenu de l’identité,

exp

(
S − S0

cNR

)
= exp

(
S − S0

(c+ 1)NR

) c+1
c
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on obtient l’expression suivante,

U
(
S, V (S, p)

)
= cNRT0

(
p0
p

)− 1
c+1

exp

(
S − S0

(c+ 1)NR

)− 1
c

exp

(
S − S0

(c+ 1)NR

)c+1
c

qui est remise en forme comme,

U
(
S, V (S, p)

)
= cNRT0

(
p

p0

) 1
c+1

exp

(
S − S0

(c+ 1)NR

)
L’enthalpie H (S, p) est obtenue par transformation de Legendre (4.29) de
l’énergie interne U (S, V ) par rapport au volume,

H (S, p) = U
(
S, V (S, p)

)
+ p V (S, p)

À l’aide des équations précédentes, cette transformation s’écrit explicite-
ment,

H (S, p) =

(
cNRT0

(
p

p0

) 1
c+1

+ p V0

(
p0
p

) c
c+1

)
exp

(
S − S0

(c+ 1)NR

)
Compte tenu de l’identité,

p V0

(
p0
p

) c
c+1

= cNRT0

(
p

p0

)(
p

p0

)− c
c+1

= NRT0

(
p

p0

) 1
c+1

l’enthalpie H (S, p) se réduit à,

H (S, p) = (c+ 1)NRT0

(
p

p0

) 1
c+1

exp

(
S − S0

(c+ 1)NR

)
La température (4.33) du gaz parfait est définie comme,

T (S, p) =
∂H (S, p)

∂S
= T0

(
p

p0

) 1
c+1

exp

(
S − S0

(c+ 1)NR

)
En inversant cette relation, on obtient l’entropie du gaz parfait S (T, p) en
fonction de la température et de la pression,

S (T, p) = (c+ 1)NR ln

(
T

T0

(
p

p0

)− 1
c+1

)
+ S0

En substituant cette équation dans l’expression de l’enthalpie du gaz parfait
H (S, p), elle est alors exprimée en termes de l’entropie et de la température
comme,

H
(
S (T, p) , p

)
= (c+ 1)NRT
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5) L’énergie libre G (T, p) est obtenue par transformation de Legendre (4.37)
de l’enthalpie H (S, p) par rapport à l’entropie S,

G (T, p) = H
(
S (T, p) , p

)
− T S (T, p)

À l’aide des équations précédentes, cette transformation s’écrit explicite-
ment,

G (T, p) = (c+ 1)NRT

(
1− ln

(
T

T0

(
p

p0

)− 1
c+1

))
− T S0

Le volume (4.42) du gaz parfait est définie comme,

V (T, p) =
∂G (T, p)

∂p
=

NRT

p

En inversant cette relation, on obtient la pression du gaz parfait p (T, V )
en fonction de la température et du volume,

p (T, V ) =
NRT

V

4.13 Propriétés thermomécaniques d’un élastique

L’état d’un élastique est décrit par les variables d’état entropie S
et de longueur L. La différentielle de l’énergie interne U (S,L) de l’élastique
s’écrit,

dU (S,L) =
∂U (S,L)

∂S
dS +

∂U (S,L)

∂L
dL = T (S,L) dS + f (S,L) dL

où f (S,L) est la norme de la force résultante exercée sur l’élastique. Les pro-
priétés physiques du matériau de l’élastique sont caractérisées par le coefficient
de dilatation à force constante,

αf =
1

L

∂L (T, f)

∂T

le coefficient de compressibilité isotherme,

χT =
1

L

∂L (T, f)

∂f

et la capacité thermique à longueur constante,

CL = T
∂S (T, L)

∂T

Utiliser ces trois propriétés physiques du matériau, considérées comme des
constantes, pour répondre aux questions suivantes.
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1) Déterminer la dérivée partielle de la force résultante f (T, L) exercée sur
l’élastique par rapport à la température lorsque sa longueur est fixée.

2) Exprimer le transfert de chaleur durant la variation isotherme de la lon-
gueur ∆Li→f de l’élastique d’un état initial i à un état final f .

3) Déterminer la dérivée partielle de la température T de l’élastique par rap-
port à sa longueur L lors d’un processus adiabatique réversible.

4.13 Solution

1) En appliquant l’identité cyclique de dérivées partielles (4.97) à la force
f (T, L), on obtient,

∂f (T, L)

∂T

∂T (L, f)

∂L

∂L (T, f)

∂f
= − 1

et ainsi,

∂f (T, L)

∂T
= −

(
1

L

∂L (T, f)

∂T

)(
1

L

∂L (T, f)

∂f

)−1

= − αf

χT

2) À température constante T , le transfert infinitésimal de chaleur s’écrit,

δQ = T dS (T, L) = T
∂S (T, L)

∂L
dL

L’énergie libre F (T, L) est la transformée de Legendre de l’énergie interne
U (S,L) par rapport à l’entropie S (T, L),

F (T, L) = U
(
S (T, L) , L

)
− T S (T, L)

La différentielle de l’énergie libre s’écrit,

dF (T, L) = dU
(
S (T, L) , L

)
− T dS (T, L)− S (T, L) dT

Compte tenu de la différentielle de l’énergie libre,

dU
(
S (T, L) , L

)
= T dS (T, L) + f (T, L) dL

La différentielle de l’énergie libre s’écrit,

dF (T, L) = −S (T, L) dT + f (T, L) dL

Le théorème de Schwarz appliqué à l’énergie libre F (T, L) s’écrit,

∂

∂L

(
∂F (T, L)

∂T

)
=

∂

∂T

(
∂F (T, L)

∂L

)
ce qui donne la relation de Maxwell,

− ∂S (T, L)

∂L
=

∂f (T, L)

∂T
= − αf

χT
= cste
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À l’aide de la relation de Maxwell, le transfert infinitésimal de chaleur peut
être mis sous la forme,

δQ = T
∂S (T, L)

∂L
dL = −T

∂f (T, L)

∂T
dL = T

αf

χT
dL

L’intégration de la chaleur infinitésimale fournie à l’élastique à température
constante T de l’état initial i à l’état final f s’écrit,

Qi→f =

∫ f

i

δQ = T
αf

χT

∫ Lf

Li

dL

Ainsi, après intégration du transfert de chaleur infinitésimal δQ à tempé-
rature T constante, on obtient le transfert de chaleur pour un processus
isotherme d’un état initial i à un état final f ,

Qi→f = T
αf

χT
∆Li→f

3) Pour un processus adiabatique réversible, on doit déterminer la dérivée de la
longueur L (S, T ) par rapport à la température lorsque l’entropie est main-

tenue constante. À l’aide de l’identité cyclique de dérivées partielles (4.97)
et de la dérivée partielle de l’entropie par rapport à la longueur obtenue au
point 2), on trouve,

∂T (S,L)

∂L
= − ∂T (S,L)

∂S

∂S (T, L)

∂L
= − T

CL

∂S (T, L)

∂L
= − αf

χT CL
T

4.15 Sous-systèmes et réservoir de chaleur et de travail

On considère un système fermé et déformable contenant un gaz homo-
gène. Le système est constitué de deux sous-systèmes simples séparés par une
paroi fixe, perméable et diatherme. Le système a une température T et une
pression p constantes car il est à l’équilibre thermique et mécanique avec un
réservoir de chaleur et de travail à température T ext et pression p ext (fig. 4.1).
L’énergie interne de la paroi est négligeable.

1) Exprimer la différentielle de l’énergie libre dG en fonction de la source
d’entropie ΣS .

2) Exprimer la différentielle de l’énergie libre dG en fonction des potentiels
chimiques µ1 et µ2 du gaz dans les sous-systèmes 1 et 2. En déduire que
dG ⩽ 0.

4.15 Solution

1) Compte tenu de la définition (4.40) à température T et pression p
constantes, la différentielle de l’énergie libre dG s’écrit,

dG = dU − T dS + p dV
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Comme le système est fermé, le courant énergétique de matière du réser-
voir vers le système est nul, c’est-à-dire IC = 0. Compte tenu du travail
infinitésimal (2.43) effectué par le réservoir sur le système et du premier
principe (1.59) pour un système fermé,

dU = δQ+ δW = δQ− p dV

À l’aide de la chaleur infinitésimale (1.56), du deuxième principe (2.29) et
de dS = Ṡ dt, la différentielle de l’énergie libre de Gibbs peut être mise sous
la forme,

dG = δQ− T dS =
(
IQ − T Ṡ

)
dt = −T ΣS dt ⩽ 0

2) L’énergie libre de Gibbs du système G (T1, T2, p1, p2, N1, N2) est la somme
des énergies libres G1 (T1, p1, N1) et G2 (T2, p2, N2) des deux sous-systèmes,

G (T1, T2, p1, p2, N1, N2) = G1 (T1, p1, N1) +G2 (T2, p2, N2)

À l’équilibre thermique et mécanique, les températures T1 et T2 et les pres-
sions p1 et p2 des deux sous-systèmes sont égales à celles du réservoir de
chaleur et de travail T ext et p ext,

T = T1 = T2 = T ext

p = p1 = p2 = p ext

La différentielle de l’énergie libre de Gibbs dG à température T et pression
p constantes s’écrit,

dG =
∂G1

∂N1
dN1 +

∂G2

∂N2
dN2

Fig. 4.1 Un système fermé et déformable contenant un gaz homogène est divisé en deux
sous-systèmes simples par une paroi fixe, perméable et diatherme. Le système est à l’équilibre
thermique et mécanique avec un réservoir de chaleur à température T ext et pression p ext.
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Étant donné que le système est fermé, la différentielle du nombre total de
moles de gaz dN s’annule,

dN = dN1 + dN2 = 0 ainsi dN2 = − dN1

De plus, en appliquant la définition (4.43) aux deux sous-systèmes, on
obtient,

µ1 =
∂G1

∂N1
et µ2 =

∂G2

∂N2

Par conséquent, la différentielle de l’énergie libre de Gibbs dG à température
T pression p constantes se réduit à,

dG = (µ1 − µ2) dN1

Cette équation donne lieu à trois types de solutions. Premièrement, dans
le cas où µ1 > µ2, le gaz se déplace du sous-système 1 vers le sous-système
2,

µ1 > µ2 et dN1 < 0 ainsi dG < 0

Deuxièmement, dans le cas où µ1 < µ2, le gaz se déplace du sous-système
2 vers le sous-système 1,

µ1 < µ2 et dN1 > 0 ainsi dG < 0

Troisièmement, dans le cas où µ1 = µ2, c’est-à-dire à l’équilibre chimi-
que (3.72), il n’y a plus de transfert de gaz à travers la paroi,

µ1 = µ2 et dN1 = 0 ainsi dG = 0

Ainsi,
dG ⩽ 0

4.16 Turbine isotherme

On considère un système ouvert constitué de deux sous-systèmes
simples, considérés comme des blocs rigides contenant un fluide incompressible
homogène en mouvement à vitesse uniforme. Les deux blocs sont séparés par
une turbine effectuant un travail externe sur le fluide lors de son transfert
du sous-système 1 au sous-système 2. L’ensemble est maintenu à température
constante T (fig. 4.2). L’énergie interne de la machine est négligeable. Les trans-
ferts de chaleur et de matière à travers la machine sont stationnaires. Ainsi,
par rapport au référentiel des blocs, les vitesses v1 et v2 du fluide dans les
deux blocs sont constantes et telles que v2

1 > v2
2. De plus, l’énergie cinétique

de rotation de la turbine est constante et n’intervient pas dans l’analyse.

On dénote I 0→1
Q et I 0→1

C le courant de chaleur et le courant énergétique

de matière de l’environnement vers le bloc 1, I 1→2
Q et I 1→2

C le courant de



Turbine isotherme 11

Fig. 4.2 Une turbine effectue un travail externe sur un fluide qui est transféré de manière
stationnaire du bloc 1 au bloc 2 à température constante. Les courants de chaleur I 0→1

Q et

I 2→0
Q décrivent le transfert de chaleur entre l’environnement et le système et les courants

énergétiques de matière I 0→1
C et I 2→0

C décrivent le transfert de matière.

chaleur et le courant énergétique de matière du bloc 1 vers le bloc 2, et I 2→0
Q et

I 2→0
C le courant de chaleur et le courant énergétique de matière du bloc 2 vers
l’environnement. On suppose que le transfert de matière entre l’environnement
et chaque bloc a lieu au potentiel chimique du bloc. Au chapitre 8, on montrera
que les potentiels chimiques du fluide dans les sous-systèmes s’écrivent,

µ1 = h1 − T s1 et µ2 = h2 − T s2

où h1 et h2 sont les enthalpies molaires du fluide dans les deux blocs et s1 et
s2 sont les entropies molaires du fluide dans les deux blocs. Durant le transfert
stationnaire de matière et de chaleur :

1) Montrer que les courants de fluide satisfont l’identité,

I = I 0→1 = I 1→2 = I 2→0 > 0

2) À l’aide des équations de bilan de masse et des courants de masse,

I 0→1
M = mI 0→1 et I 2→0

M = mI 2→0

où m est la masse molaire du fluide, montrer que les courants de masse
satisfont l’identité,

IM = I 0→1
M = I 1→2

M = I 2→0
M > 0

3) À l’aide des courants d’entropie,

I 0→1
S = s1 I

0→1 et I 2→0
S = s2 I

2→0

exprimer le courant de chaleur IQ de l’environnement vers le système en
termes du courant de fluide I et des entropies molaires s1 et s2.

4) Exprimer le courant énergétique de matière IC de l’environnement vers le
système en termes du courant de fluide I, des enthalpies molaires h1 et h2

et des entropies molaires s1 et s2.
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5) Déterminer le courant d’énergie interne IU de l’environnement vers le sys-
tème.

6) Exprimer la puissance extérieure P ext de la turbine en termes du courant
de fluide I et de la masse molaire m.

7) Déterminer la relation qui lie les enthalpies molaires h1 et h2 et les vitesses
v1 et v2 du fluide.

8) Dans le cas particulier où la turbine se comporte comme une paroi per-
méable qui laisse simplement passer le fluide d’un bloc à l’autre sans effec-
tuer de travail externe, c’est-à-dire que P ext = 0, lier les vitesses v1 et v2

entre elles et les enthalpies molaires h1 et h2 du fluide entre elles.

4.16 Solution

1) Pour un transfert stationnaire de matière entre les blocs, l’équation de bilan
de fluide (2.22) dans chaque bloc s’écrit,

Ṅ1 = I 0→1 − I 1→2 = 0 et Ṅ2 = I 1→2 − I 2→0 = 0

Ainsi, on en conclut que,

I = I 0→1 = I 1→2 = I 2→0 > 0

2) Étant donné qu’il n’y a pas de source de masse, l’équation de bilan de masse
dans chaque bloc pour un transfert stationnaire de masse entre les blocs
s’écrit,

Ṁ1 = I 0→1
M − I 1→2

M = 0 et Ṁ2 = I 1→2
M − I 2→0

M = 0

où I 0→1
M , I 1→2

M et I 2→0
M sont respectivement les courants de masse entre

l’environnement et le bloc 1, le bloc 1 et le bloc 2 et le bloc 2 et l’environ-
nement. Ainsi, on en conclut que,

IM = I 0→1
M = I 1→2

M = I 2→0
M > 0

Les courants de masse liés au transfert de matière entre l’environnement et
le bloc 1 et entre le bloc 2 et l’environnement s’écrivent,

I 0→1
M = mI 0→1 = mI et I 2→0

M = mI 2→0 = mI

Ainsi,
IM = mI

3) Le courant de chaleur de l’environnement vers le système à température T
s’écrit,

IQ = I 0→1
Q − I 2→0

Q = T I 0→1
S − T I 2→0

S = T s1 I
0→1 − T s2 I

2→0

Les courants d’entropie liés au transfert de matière entre l’environnement
et le bloc 1 et entre le bloc 2 et l’environnement s’écrivent,

I 0→1
S = s1 I

0→1 = s1 I et I 2→0
S = s2 I

2→0 = s2 I
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Le transfert de chaleur est stationnaire (2.36). Or, le courant d’entropie IS
n’est pas nul. Compte tenu de l’équation de bilan d’entropie (2.3), la source
d’entropie ΣS n’est pas nulle non plus, ce qui signifie que le processus est
irréversible,

ΣS = − IS = −
(
I 0→1
S − I 2→0

S

)
= − (s1 − s2) I > 0

Ainsi,
s2 > s1

Par conséquent, le courant de chaleur de l’environnement vers le système
se réduit à,

IQ = TIS = T (s1 − s2) I < 0

Ainsi, il y a un transfert de chaleur du système vers l’environnement afin
de compenser la chaleur dégagée dans le système par dissipation.

4) Le courant énergétique de matière de l’environnement vers le système (2.32)
s’écrit,

IC = I 0→1
C − I 2→0

C = µ1 I
0→1 − µ2 I

2→0 = (µ1 − µ2) I

Ainsi, il est exprimé en termes des enthalpies molaires comme,

IC =
(
(h1 − T s1)− (h2 − T s2)

)
I

5) Le courant d’énergie interne (1.50) s’écrit,

IU = IQ + IC = (h1 − h2) I

6) Étant donné que les vitesses du fluide sont uniformes dans chaque bloc, la
puissance extérieure de la turbine est la variation temporelle de l’énergie
cinétique du système due au courant de masse entre l’environnement et les
blocs,

P ext =
1

2
I 2→0
M v2

2 −
1

2
I 0→1
M v2

1 = − 1

2
IM
(
v2
1 − v2

2

)
= − 1

2
mI

(
v2
1 − v2

2

)
Ainsi, la puissance extérieure de la turbine,

P ext = − 1

2
mI

(
v2
1 − v2

2

)
< 0

est négative car v2
1 > v2

2 ce qui signifie que le système, c’est-à-dire le fluide,
effectue un travail extérieur W ext < 0 sur la turbine et non l’inverse.

7) Compte tenu du premier principe (1.71) pour un transfert stationnaire de
matière entre l’environnement et les deux blocs rigides, c’est-à-dire PW = 0,

Ė = IQ + IC + P ext = IU + P ext = 0

on conclut aussi du premier principe que la puissance extérieure de la tur-
bine s’écrit,

P ext = − IU = (h2 − h1) I



14 Potentiels thermodynamiques

La turbine n’est pas un système simple, car il n’existe pas de référentiel au
repos du système. Par conséquent, on ne peut utiliser l’équation de bilan
d’énergie interne (1.48) qui est définie par rapport au référentiel au repos.
En comparant les deux expressions de la puissance extérieure P ext, on en
conclut que,

(h2 − h1) I = − 1

2
mI

(
v2
1 − v2

2

)
Par conséquent, la différence entre l’énergie cinétique molaire et l’enthalpie
molaire du fluide est conservée par la turbine isotherme,

1

2
mv2

1 − h1 =
1

2
mv2

2 − h2

8) Si la turbine ne travaille pas, la puissance extérieure est nulle, c’est-à-dire
que P ext = 0. Ainsi, il n’y a pas de variation d’énergie cinétique et donc
les vitesses sont égales,

v1 = v2

On en conclut alors que les enthalpies molaires sont aussi égales,

h1 = h2

comme dans la détente de Joule-Thomson qui est isenthalpique.


